ROYAUME DU MAROC

OFFICE MAROCAIN DE LA PROPRIETE INDUSTRIELLE ET COMMERCIALE

(12) BREVET D'INVENTION

(11) N° de publication :

MA 39056 A1

(51) Cl. internationale:

B01J 27/00; C05B 7/00;

B01J 27/14

(43) Date de publication :

29.12.2017

(21) N° Dépôt:

39056

(22) Date de Dépôt :

25.05.2016

(71) Demandeur(s):

SOUIZI ABDELAZIZ, 12, Lotissement Jaouhara, Bir Rami, Kenitra kénitra (MA)

(72) Inventeur(s):

SOUIZI ABDELAZIZ

(54) Titre : Utilisation directe des Engrais solides à base de phosphates MAP, DAP, TSP, NPK et NPS comme catalyseurs pour chimie fine

(57) Abrégé : l'invention concerne l'utilisation des engrais MAP (mono amino phosphates), DAP (di-amino phosphates), TSP (triples super phosphates) ainsi que les engrais binaires et ternaires types NPS et NPK en tant que catalyseurs hétérogènes dans les réactions organiques.

5

10

15

25

DESCRIPTION

La recherche de procédés catalytiques combinés au développement de stratégies de synthèse propres et respectueux de l'environnement est l'objectif principal de nombreux chimistes, puisque les préoccupations environnementales sont sans cesse en augmentation à l'échelle mondiale. A l'heure actuelle de nombreux catalyseurs à base de phosphates ont fait leur apparition et continuent de susciter un certain engouement auprès des chimistes, comme l'atteste les nombreuses publications parues au cours des vingt dernières années. Parmi ces catalyseurs, on peut citer les phosphates naturels (PN)⁴⁻⁹, les hydroxyapatites (HAP)¹⁰⁻¹³ et les fluoroapatites (FAP)^{14,16}.

La présente invention concerne la première utilisation des engrais: Les Mono Amino Phosphates (MAP), Les di-Amino Phosphates (DAP), Les Triples Super Phosphates (TSP) ainsi que les engrais binaires et ternaires types NPS et NPK en tant que catalyseurs hétérogènes dans les réactions organiques.

A notre connaissance, c'est la première fois que les engrais phosphatés (MAP, DAP, TSP et les engrais binaires et ternaires types NPS et NPK) commercialisés sous forme de granulés ont été utilisés comme catalyseurs. Ces engrais sont produits en quantité industrielle et sont surtout utilisés en agriculture comme sources nutritives pour le phosphore, l'azote et le potassium.

Les différents engrais utilisés sont commercialisés sous forme de :

- O Mono-Ammonium Phosphate: MAP 11-52-00 Engrais binaire avec Azote: 11 % N et Phosphore: 52 % P2O5.
 - o Di-Ammonium Phosphate: **DAP 18-46-00** Engrais binaire avec Azote: 18 % N et Phosphore: 46 % P2O5.
 - Triple Super Phosphate: TSP 00-46-00 Engrais simple granule Fertilizer avec Phosphore: 46
 P2O5.
 - O Tous les **engrais ternaires types NPK** solides ont été essayés et donnent d'excellents résultats. A titre d'exemples indicatifs et non limitatifs :
 - NPK 16-11-20: Engrais ternaire avec Azote: 16 %, Phosphore: 11 % et Potassium: 20 %.
 - NPK 17-16-12: Engrais ternaire avec Azote: 17 %, Phosphore: 16 % et Potassium: 12 %.
 - NPK 15-15-10S: Engrais ternaire avec Azote:15 %, Phosphore: 15 % et Potassium 15 %, Soufre: 10 %.
 - o Les engrais binaires types NPS: Exemples
 - NPS: 19-38-0-7S: Engrais ternaire avec Azote: 19 %, Phosphore: 38 % et Soufre: 10 %.
 - NPS: 12-46-0-7S: Engrais ternaire avec Azote: 12 %, Phosphore: 46 % et Soufre: 10 %.

35

30

Leur préparation en tant que catalyseurs nécessite un procédé très simple consistant en un broyage en poudre, un tamisage avec séparation en plusieurs fractions de plus en plus fines. A titre d'exemple, ces catalyseurs MAP, DAP, TSP et les engrais binaires et ternaires types NPK et NPS ont été broyés, tamisés avec séparation dans les gammes, respectivement, de $10 \ a$ 71 μ m, 71 a 90 μ m et de 90 a 120 μ m. Les moyennes des diamètres de chaque fraction ont été calculées a partir des tailles des pores moyennes des deux tamis adjacents (**Tableau 1**).

Tableau 1.

5

.10

Fraction numéro	Gamme de tailles des	Diamètre moyen
	particules	
1	10-71 μm	53.5 μm
2	71-90 μm	80.5 μm
3	90-120 μm	105 μm

L'activité catalytique de ces engrais a été évaluée, dans un premier temps, dans la condensation de Knoevenagel (Schéma 1) de divers aldéhydes aromatiques avec le malononitrile à température ambiante. Ces engrais MAP, DAP, TSP et engrais binaires et ternaires types NPK et NPS ont montré une activité catalytique élevée et une aptitude d'être récupérés et réutilisés sans aucune perte significative dans leur activité catalytique.

R₁= H, Cl, NO₂, OCH₃ R₂= H, Cl, OCH₃ A = DAP, B = MAP, D = TSP, E = NPK, F = NPS

Schéma 1

15

20

Pour atteindre les conditions optimales de la réaction de Knoevenagel, nous avons effectué une étude cinétique incluant l'effet de solvant, du temps de la réaction, de la masse du catalyseur et la variation de la taille des particules du catalyseur. Les meilleures conditions ont été obtenues par l'utilisation de ces engrais (MAP, DAP, TSP et engrais binaires et ternaires types NPK et NPS) dans leur état commercial, sans aucune purification, en utilisant l'éthanol comme solvant. Ils ont été simplement broyés et tamisés selon le procédé décrit ci-dessus (Tableau 1).

Nous avons par conséquent, à travers cette étude, évalué la capacité catalytique de ces engrais MAP, DAP et TSP et engrais binaires et ternaires types NPK et NPS.

5

10

15

20

25

Pour cela, nous avons choisi la réaction de Knoevenagel ²⁵, en raison de son importance dans la production de produits de chimie fine ²³ et de produits pharmaceutiques ²⁴, comme support pour ce test.

Nous rappelons que cette réaction a servi, depuis de nombreuses années, de modèle pour le développement de divers catalyseurs tels que, très récemment, les catalyseurs à base de phosphate, tels que KF/NP²⁰, le NaNO₃/NP²⁰, le KF/HAP²¹, NaNO₃/HAP²¹ ainsi que le Na₂CaP₂O₇²², les catalyseurs magnétiques (magnetic catalysts) ²⁶⁻³¹, les « metal organic frameworks MOFs » ^{32,33}, les « Zeolite imidazole frameworks ZIFs » ^{34,35}, les « ionic liquids » ³⁸⁻⁴¹, l'«Hydrotalcite» ⁴⁻⁴⁴, les acides de Lewis ⁴⁵ et les base de Lewis ⁴⁶, la dolomite ⁴⁷, les Polyethylenimines-SiO₂ ⁴⁸, le «potassium-loaded Mg Al oxide K-MgAl(O)» ⁴⁹, les dérivés de l'urée (urea derivatives) ⁵⁰, les zéolites ⁵¹⁻⁵³, la calcite et la fluorite ⁵⁴.

Cependant, Le grand avantage des catalyseurs sous forme d'engrais, est qu'ils sont produits en quantité industrielle, ils sont donc très disponibles et très bon marchés par opposition à de nombreux catalyseurs utilisés industriellement et qui sont pour la plupart à base de métaux précieux (Or, Platine etc... ou demandent des procédés complexes pour leur élaboration, ce qui les rend naturellement très chers.

Resultats des tests des catalyseurs map, dap, tsp et des catalyseurs engrais binaires et ternaires types npk et nps dans la reaction de knovenagel.

Les activités catalytiques des engrais phosphatés MAP, DAP, TSP et engrais binaires et ternaires types NPK et NPS ont été évaluées en se basant sur la condensation de Knoevenagel entre le 4-chlorobenzaldehyde avec le malononitrile (Schéma 2) dans les conditions de température ambiante et de pression avec l'éthanol absolu comme solvant. En l'absence du catalyseur, la conversion du 4-chlorobenzaldehyde en 4-chlorobenzylidene malononitrile ne dépasse guère 55% en rendement. Cependant, en présence d'environ 4 mol% des différents catalyseurs à base d'engrais phosphatés, la réaction conduit à des rendements excellents (Tableau 2).

4-Chlorobenzaldéhyde Malononitrile

4-Chlorobenzylidenemalononitrile

Schéma 2

Δ

Tableau 2. Synthèse du 4-chlorobenzylidenemalononitrile utilisant les engrais MAP, DAP, TSP et engrais binaires et ternaires types NPK et NPS.

Entrée	Catalyseur	Masse du Catalyseur (mol%)	Yield %
1	Néant	-	55
2	MAP	0.01g (3.76mol%)	91
3	DAP	0.01g (4.35mol%)	93
4	TSP	0.02g (4.27mol%)	75
5	NPK (16-11-20)	0,015g	82
6	NPS (12-46-0-7S)	0,015g	92

Conditions de la réaction: 3mmol malononitrile, 2 mmol 4-chlorobenzaldehyde, (~4mol%) du catalyseur, 3 ml EtOH, 30 min, température ambiante.

5 Néant: réaction réalisée sans catalyseur.

Optimisation des conditions de la réaction de condensation Knoevenagel:

Les excellents résultats obtenus dans l'évaluation de l'activité catalytique des engrais phosphatés MAP, DAP, TSP et des engrais binaires et ternaires types NPK et NPS nous ont incités, dans une tentative d'optimisation des conditions réactionnelles, à consacrer une étude sur l'influence de différents paramètres qui contrôlent la condensation de Knoevenagel en présence de l'un des catalyseurs.

Nous avons donc étudié, respectivement,

- L'effet du temps,

10

15

20

25

30

- De la masse du catalyseur
- Et du solvant de la réaction,

Effet des catalyseurs sur le temps de la réaction:

L'étude cinétique de la synthèse des 4-chlorobenzylidène malononitriles en fonction du temps a montré que la conversion du 4-chlorobenzaldéhyde augmente au fur et à mesure que le temps de la réaction augmente jusqu'à ce que l'équilibre soit atteint à 25 min pour le catalyseur <u>DAP</u>, 30 min pour le catalyseur <u>MAP</u>, 60 min pour le catalyseur <u>TSP</u> et 60 mn pour le catalyseur <u>NPK</u>(16-11-20). (Figure 1)

• Influence de la masse optimale du catalyseur:

Afin de déterminer la quantité optimale de chacun des catalyseurs MAP, DAP, TSP et des catalyseurs binaires et ternaires types NPK et NPS pour la condensation de Knoevenagel, nous avons pris le 4-chlorobenzaldéhyde comme substrat puis nous avons généralisé les résultats obtenus sur les autres aldéhydes aromatiques. La réaction du 4-chlorobenzaldéhyde avec le malononitrile a été effectuée sur chacun des catalyseurs en faisant varier sa masse de 0,01 g à 0,06 g. La Figure 2 montre que les catalyseurs sont actifs dès 10 mg de catalyseur. Ainsi, 0,01 g des catalyseurs <u>DAP</u> et <u>MAP</u>,

0.02 g du catalyseur <u>TSP</u> et 0,015 g du catalyseur type <u>NPK</u> (16-11-20) ont été choisies comme étant les quantités optimales pour leurs utilisations dans les réactions organiques.

• Effet du solvant:

Pour interpréter les effets de solvant pour ces catalyseurs MAP, DAP, TSP et des catalyseurs binaires et ternaires types NPK et NPS, nous avons effectué la réaction dans différents solvants (**Figures 3**). Elle a montré que le catalyseur a la plus forte activité dans l'éthanol et le méthanol qui sont protiques et polaires; en revanche, les solvants non protiques et moins polaires, y compris le THF, l'acétonitrile et le dioxane ne sont pas bons solvants.

10

15

25

5

Effet de la taille des particules:

Différentes fractions du catalyseur avec des dimensions particulaires précises ont été employées pour examiner leur effet sur la réaction. Les résultats montrés dans le Tableau 3 indiquent que les catalyseurs maintiennent leurs activités catalytiques même lorsqu'ils sont utilisés directement sous leur forme commerciale (gamme de taille des Particules inférieures à 120 µm). Il faut remarquer, cependant, que les meilleurs rendements ont été obtenus par la fraction 71-10 µm.

Tableau 3. Comparison entre les différentes fractions des catalyseurs MAP, DAP, and TSP.

Réactifs (a)	Gamme des tailles	l l		
	des particules	MAP (b)	DAP (c)	TSP (d)
1 + 2	< 120 μm	89	88	84
1+2	71-10 μm	91	95	97
1+2	90-71 μm	90	93	87
1 + 2	120-90 μm	87	91	85

Reaction conditions: (a) 2 mmol de 1 = 4-chlorobenzaldéhyde, 3mmol de 2 = malononitrile, 3 ml 20 EtOH, t.a., (b) 0.01 g, 30min; (c) 0.01 g, 25 min; (d) 0.02 g, 60 min.

Etude de la recyclabilité des catalyseurs MAP, DAP, TSP et des catalyseurs ternaires types NPK (16-11-20).

L'aptitude du catalyseur à être recyclé a été également évaluée dans la réaction de Knovenagel. Cette étude a révélé que les catalyseurs MAP, DAP, TSP et les catalyseurs ternaires types NPK peuvent être réutilisés plus de 5 fois sans diminution notable de leurs activités catalytiques (Figure 4).

Afin de mieux faire comprendre l'invention, on va décrire, à titre d'exemple purement illustratif et non limitatif, plusieurs réactions organiques connues dans la littérature qui ont été accélérées par ces catalyseurs avec des améliorations très notables des rendements.

6

Exemple 1

Synthèse des Benzothiazinones 55

5

Schéma 3

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur A = DAP; B = MAP; et D = TSP:

Le Tableau 4 montre que le temps de cette réaction est passé de 22 heures à 1 heure.

10

Tableau 4 : Test catalytique

Entrée	Catalyseur	Temps	Rendement (%)
1	Néant	22h	80
2	Α	1 h	85
3	В	1h20min	87
4	D	2h	82

Néant: sans catalyseur, A = DAP; B = MAP; D = TSP

Etude des paramètres d'optimisation de la réaction

15

Le Tableau 5 montre que la masse optimale du catalyseur est 10%.

Tableau 5 : Effet de la masse des catalyseurs sur le rendement de la réaction

Entrée	Catalyseur	Masse du Catalyset (mol%)	Temps	Rendement (%)
1	A	10	35min	89
2		20	45min	88
3		30	1 h	85
4		40	1h15min	83
5	В	10	40min	92
6		20	55min	91
7		30	1h10min	85
8		40	1h25min	82
9	D	10	55min	90
10		20	1h05min	85
11		30	1h20min	83
12		40	1h35min	79

A = DAP; B = MAP; D = TSP

Le Tableau 6 montre que le solvant qui donne les meilleurs rendements est l'Ethanol.

Tableau 6: Effet du solvant sur le rendement de la réaction

Entrée	Catalyseur (10 mol %)	Solvant (3ml)	Temps	Rendement (%)
1	A	CH ₃ CN	1h	85
2	В	+•	1h20min	87
3	D	•	2h	82
4	Α	EtOH	35min	89
5	В		40min	92
6	D		55min	90
7	Α	AcOEt	3h	73
8	В		3h30min	75
9	D		2h50min	65
10	Α	CHCl ₃	3h40min	60
11	В	-	3h10min	63
12	D		4h	55

A = DAP; B = MAP; D = TSP

5

Le Tableau 7 montre que la taille des particules n'a pas une grande influence sur le temps et les rendements de la réaction.

Tableau 7: Effet de la taille des particules des catalyseurs sur le rendement de la réaction

Entrée	Catalyseur (10 mol%)	Taille des particules	Temps	Rendement (%)
1	A	36 - 71 μm	35 min	89
2		71-90 μm	35 min	89
3		90-120 μm	40 min	88
4	В	36-71 μm	40 min	92
5		71 - 90 μm	40 min	93
6		90-120 μm	40 min	91
7	D	36-71 μm	55 min	90
8		71 - 90 μm	55 min	88
9		90-120 μm 🚶	55 min	91

10 A = DAP; B = MAP; D = TSP

Le Tableau 8 montre que les catalyseurs peuvent être recyclés au moins 4 fois avec un rendement très élevé.

15 Tableau 8: Recyclabilité des catalyseurs

Entrée	Catalyseur	Cycle	Temps	Rendement (%)
1	A	1	35 min	89
2		2	35 min	88
3		3	35 min	88
4		4	35 min	87
5	В	1	40 min	92
6		2	40 min	92
7		3	40 min	91
8		4	40 min	90
9	D	1	55 min	90
10		2	55 min	88
11		3	55 min	88
12	•	4	55 min	87

A = DAP; B = MAP; D = TSP

· . .

Exemple 2

Synthèse des dérivés des quinoxalines 2,3-disubstitués 56

5

Schéma 4

Test catalytique

Le test catalytique consiste à tester l'activité catalytique des trois catalyseurs A = DAP; B = MAP; D = TSP.

Le Tableau 9 montre que le temps de la réaction a été raccourci et les rendements ont été multipliés par un facteur plus que 4.

Tableau 9: Test Catalytique.

Catalyseur	Temps	R%	Point de Fusion (F°C)
Néant	10 min	23	126–127
A	1 min	99	126–127
В	4 min	94	126–127
D	1 min	96	126–127

Néant : sans catalyseur, A = DAP; B = MAP; D = TSP.

15

Etude des paramètres d'optimisation de la réaction

- Effet du solvant
- 20 La Figure 5 montre que l'Ethanol est le solvant optimal de la réaction.
 - Effet de la masse du catalyseur

La Figure 6 montre que le nombre de mol% optimal du catalyseur est de 5 mol%.

25

Effet du des catalyseurs sur le temps de la réaction

La Figure 7 montre que Le temps optimal de la réaction est de 1 min.

30

Recyclage des catalyseurs

La Figure 8 montre que ces catalyseurs demeurent fonctionnels après recyclage au moins 5 fois.

Exemple 3

Synthèse des dérivés d'imidazoles par l'action d'un nouveau catalyseur à base de phosphate 57

R= H, 4-Cl, 4-Me, 4-N(Me)₂, 4-NO₂, 2-OH.

5 Schéma 5

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique du catalyseur E = NPK (16-11-20):.

10 Le Tableau 10 montre que le catalyseur E possède une activité catalytique intéressante dans la synthèse de 2, 4,5-triphenylimidazole.

Tableau 10: Test catalytique.

Catalyseur	Solvant	Temps	Rdt (%)	F°C du produit obtenu
•	•	48h	•	Non produit
Cat E	-	60min	74	272-274
-	MeOH	90min	47	272-274
Cat E	MeOH	60min	94	272-274

Optimisation des conditions réactionnelles

15 L'effet du solvant :

La Figure 9 montre que le solvant optimal de la réaction est le MeOH.

• Effet de la masse du catalyseur :

La Figure 10 montre que la masse optimale de catalyseur est 0 ,05g

- Effet du catalyseur sur le temps de la réaction:
- 20 La Figure 11 montre que le temps optimal pour la réaction est 15 min.

• Recyclage du catalyseur

La Figure 12 montre que le catalyseur E ne perd pas son activité catalytique même au bout de cinq utilisations.

10

Exemple 4

Synthèse de la famille des 2,3-dihydroquinazolin-4(1H)-ones 58

Schéma 6

Test catalytique

10

5

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

Le Tableau 11 montre que la réaction qui donnait des traces de produit, donne le produit avec de très bons rendements en présence des catalyseurs A, B ou D.

15

Tableau 11: Test catalytique

Catalyseur	Temps (h)	Rendement(%)
Sans	2	traces
A	2	70
В	1h30	78
D	1	86

Optimisation des conditions réactionnelles

20

Effet du solvant

La Figure 13 montre que la réaction est favorisée dans le méthanol pour Cat.A et Cat.D et pour Cat.B favorise dans l'acétonitrile

25

Effet de la masse de catalyseur

La Figure 14 montre que la masse optimale du catalyseur est obtenu à 0,04g pour le catalyseur A, 0,1g pour le catalyseur B et 0,02 g pour le catalyseur D.

30

Recyclage du catalyseur

La Figure 15 montre clairement que ces catalyseurs demeurent fonctionnels après au moins 4 recyclages.

35

11

Exemple 5

Synthèse des 1,4-benzothiazines 59

5

Test catalytique

10

Le test catalytique consiste à évaluer l'activité catalytique du catalyseur E = NPK (16-11-20).

Le Tableau 12 montre que la réaction est activée dès 3 heures avec de très bons rendements.

15

Tableau 12: Test catalytique

Catalyseur	Temps (h)	Rendement(%)
Sans	12	44
E	3	73

Optimisation des conditions réactionnelles

Effet des solvants

20 La Figure 16 montre que la réaction est favorisée dans l'acétonitrile.

• Effet de la masse de catalyseur

La Figure 17 montre que la masse optimale du catalyseur est 0,03g

25

• Recyclage du catalyseur

La Figure 18 montre clairement que le catalyseur E = NPK (16-11-20) demeure fonctionnel après 4 recyclages.

30

Exemple 6

Synthèse des dérivés d'imidazoles 60

35

Ph = C6H5

Schéma 8

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

5

Le Tableau 13 montre que les catalyseurs A, B et D ont une activité catalytique importante.

Tableau 13: Test catalytique

Entrée	Catalyseur	Masse du catalyseur (mol%)	Rendement %	
1	-	_	47	
2	Α	0.01g (4.34mol%)	81	
3	B 0.01g (3.78mol%)		80	
4	D	0.01g (2.31mol%)	83	

Optimisation des conditions réactionnelles

10

• Effet de la masse des catalyseurs

La Figure 19 montre que la masse optimale des catalyseurs pour A est 8,68 mol%, pour B est 11,34 mol% et pour D est 9,24mol%.

15

Effet du solvant :

La Figure 20 montre que le solvant optimal de la réaction pour les trois catalyseurs est l'éthanol.

Recyclage du catalyseur

20

La Figure 21 montre que les trois catalyseurs ne perdent pas leur activité catalytique même après la quatrième réutilisation.

25

Exepple 7

Synthèses des 3,4-dihydropyrimidin-2(1H)-ones 64

 $R = 4 - MeOC_6H_4, 2 - ClC_6H_4, 4 - ClC_6H_4, C_6H_4, 4 - MeC_6H_4, 4 - N(Me)_2C_6H_4, 2, 4 - (Cl)_2C_6H_3, X = O.S.$

Schéma 9

30

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

35 Le Tableau 14 montre que les catalyseurs A, B et D ont une activité catalytique très importante.

Tableau 14: Test catalytique

Catalyseur	Temps (min)	Rendement(%)
Néant	8 h	20 %
A	15 min	95 %
В	25 min	93 %
D	20 min	98 %

Optimisation des conditions réactionnelles

Effet du solvant :

Le Tableau 15 montre que la réaction est optimale en l'absence solvant.

10

5

Tableau 15: Effet du solvant

Solvant	-	Temps (min)			Rendement %			
	A	В	D	A	В	D		
Ethanol	15	25	20	95	93	98		
Méthanol	20	33 .	. 30	91	80	95		
Isopropanol	40	60	45	75	75	82		
Butanol	40	50	35	81	77	73		
DMF	60	75	55	67	65	70		
Acétonitrile	30	60	20	77	70	68		
THF	15	20	12	50	54	61		
ACOEt	35	45	30	65	59	70		
CH ₂ Cl ₂	60	90	40	50	48	44		
Sans Solvant	8	5	10	97	95	98		

Effet de la masse des catalyseurs

Le Tableau 16 montre que la masse optimale du catalyseur est de 1 mol% pour chacun des 3 catalyseurs testés (A, B et D).

Tableau 16: Effet de la masse

		Temps (min)			Rendement %		
	A	В	D	A	В	D	
1 mol%	8	10	5	97	96	98	
2 mol%	8	10	5	97	96	98	
3 mol%	8	10	5	97	95	98	
4 mol%	8	10	5	97	95	98	
5 mol%	8	10	5	97	95	98	
6 mol%	12	15	10	95	94	97	
7 mol%	15	25	18	93	91	94	
8 mol%	22	30	25	93	90	94	
9 mol%	30	40	30	90	87	89	
10 mol%	30	40	30	90	85	81	

20

Recyclage du catalyseur

La Figure 22 montre que les trois catalyseurs ne perdent pas leur activité catalytique même après la cinquième réutilisation.

Exemple 8

5

Synthèses des 1,5-benzodiazépines 61

10

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

Le Tableau 17 montre que les catalyseurs A, B et D ont une activité catalytique intéressante.

15

Tableau 17: Test catalytique

	Temps (min)	Rendement(%)
Sans Catalyseur	24h	
A	9 min	94 %
В	10 min	96 %
D	1 min	99 %

Optimisation des conditions réactionnelles

20

• Effet du solvant :

Le Tableau 18 montre que le solvant optimal de la réaction pour les trois catalyseurs est l'éthanol.

25 Tableau 18: Effet du solvant

Solvant	Temps (min)				%	
	Α	В	D	A	В	D
Ethanol	9	10	1	94	96	99
Méthanol	15	3	2	90	94	98
Isopropanol	17	8	11	80	84	92
Butanol	7	11	14	79	82	90
DMF	20	20	20	84	86	94
Acétonitrile	10	10	19	80	81	89
THF	30	8	45	75	79	86
ACOEt	26	21	20	81	81	89
CH ₂ Cl ₂	10	10	13	75	77	84
Sans Solvant	1	1	1;	64	69	72

• Effet de la masse des catalyseurs

Le Tableau 19 montre que la masse optimale du catalyseur est de 1 mol% pour les 3 catalyseurs testés.

5

Tableau 19: Effet de la masse

		Temps (min)			Rendement %		
	Α	В	D	A	В	D	
1 mol%	1	3	3	97	98	99	
2 mol%	7	3	4	97	98	99	
3 mol%	9	3	3	96	97	99	
4 mol%	2	4	5	95	96	99	
5 mol%	9	-1:0	1	94	-96	99	
6 mol%	3	4	6	93	94	97	
7 mol%	4	3	7	90	90	95	
8 mol%	14	5	4	88	87	92	
9 mol%	16	7	3	82	84	82	
10 mol%	6	8	2	79	80	75	

Recyclage du catalyseur

La Figure 23 montre que les trois catalyseurs ne perdent pas leur activité catalytique même après la cinquième réutilisation.

Exemple 10

15

Synthèses des 3,4-dihydro-2-pyronyl-1,5-benzodiazepines 62

Schéma 11

Test catalytique

20

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

Le Tableau 20 montre que les catalyseurs A, B et D ont une activité catalytique intéressante.

25 Tableau 20: Test catalytique

	Temps (min)	Rendement(%)
Sans Catalyseur	4h	
Cat.1	15min	88 %
Cat.9	6min	95 %
Cat.12	3min	97 %

Optimisation des conditions réactionnelles

Effet du solvant :

5

Le Tableau 21 montre que le solvant optimal de la réaction pour les trois catalyseurs est le Méthanol.

Tableau 21: Effet du solvant

Solvant (1 ml)) Tem		nps (min)		Rendement %		
•	Cat 1	Cat 9	Cat 12	Cat 1	Cat 9	Cat 12	
Ethanol	30	34	20	85	64	96	
Methanol	15	6	3	88	95	97	
Acetonitrile	33	45	12	67	63	83	
THF	45	60	20	51	55	60	
Sans-Solvant	60	60	60				

10

Effet de la masse des catalyseurs

Le Tableau 22 montre que le nombre de mol% du catalyseur A est 9 mol% et le nombre de mol% du catalyseur B est 9 mol% et le nombre de mol% du catalyseur D est 5 mol%.

15 Tableau 22: Effet de la masse

		Temps (min)	Rendement %		
	Cat 1	Cat 9	Cat 12	Cat 1	Cat 9	Cat 12
1 mol%	. 15	6	3	88	70	73
2 mol%	15	6	3	89	78	78
3 mol%	15	6	3	89	82	93
4 mol%	15	6	3	90	93	96
5 mol%	15	6 ;	3	90	95	97
6 mol%	15	6	3	92	95	97
7 mol%	15	6	3	93	97	95
8 mol%	15	6 .	3	96	97	93
9 mol%	15	6	3	99	98	93
10 mol%	15	6	3	94	98	90

Recyclage du catalyseur

La Figure 24 montre que les trois catalyseurs ne perdent pas leur activité catalytique même après la cinquième réutilisation.

Exemple 11

Synthèses des 3,4-dihydropyrimidin-2(1H)-ones 63

 $R = 4 - MeOC_6H_4, 2 - ClC_6H_4, 4 - ClC_6H_4, C_6H_4, 4 - MeC_6H_4, 4 - N(Me)_2C_6H_4, 2, 4 - (Cl)_2C_6H_3, X = O,S.$

5

Schéma 12

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

10

Le Tableau 23 montre que les catalyseurs A, B et D ont une activité catalytique très importante.

Tableau 23: Test catalytique

	Temps (min)		Rendement(%)
Sans Catalyseur	8 h		20 %
A	15min	::	95 %
В	25 min	: .	93 %
D	20 min		98 %

15

Optimisation des conditions réactionnelles

• Effet du solvant :

Le Tableau 24 montre que la réaction est optimale en l'absence du solvant.

20

Tableau 24: Effet du solvant

Solvant	7	Temps (min)			Rendement %			
	Cat 1	Cat 9	Cat 12	Cat 1	Cat 9	Cat 12		
Ethanol	15	25	20	95	93	98		
Méthanol	20	33	30	91	80	95		
Isopropanol	40	60	45	75	75	82		
Butanol	40	50	35	81	77	73		
DMF	60	75	55	67	65	70		
Acétonitrile	30	60	20	77	70	68		
THF	15	20	12	50	54	61		
ACOEt	35	45	30	65	59	70		
CH ₂ Cl ₂	60	90	40	50	48	44		
Sans Solvant	8	5	10	97	95	98		

5

Effet de la masse des catalyseurs

Le Tableau 25 montre que la masse du catalyseur en nombre de mol% est de 1 mol% pour chacun des 3 catalyseurs testés.

Tableau 25: Effet de la masse

	Temps (min)		Rendement %			
	Cat 1	Cat 9	Cat 12	Cat 1	Cat 9	Cat 12
1 mol%	8	10	5	97	96	98
2 mol%	8	10	5	97	96	98
3 mol%	8	10	5	97	95	98
4 mol%	8	10	5	97	95	98
5 mol%	8	10	5	97	95	98
6 mol%	12	15	10	95	94	97
7 mol%	15	25 .	18	93	91	94
8 mol%	22	30	25	93	90	94
9 mol%	30	40	30	90	87	89
10 mol%	30	40	30	90	85	81

Recyclage du catalyseur

10 La Figure 25 montre que les trois catalyseurs ne perdent pas leur activité catalytique même après la cinquième réutilisation.

Exemple 12

Synthèse des 1,4-dihydropyridines via la réaction de Hantzch 64

Schéma 13

20

25

15

Test catalytique

Le test catalytique consiste à évaluer l'activité catalytique de chaque catalyseur.

Le Tableau 26 montre que les catalyseurs A, B et D ont une activité catalytique intéressante.

Entrée	Catalyseur	Temps	Rendement (%)
1	Néant	24h	36%
2	A	30min	74%
3	В	1h	76%
4	D	45min	48%

Optimisation des conditions réactionnelles

Etude de l'effet du solvant:

5

La Figure 26 montre les réactions effectuées dans des solvants protiques polaires tel que l'eau et l'éthanol ont fourni les Dihydropyridines désirées avec des rendements très satisfaisants. En conséquence, il nous semble raisonnable que le travail doit être poursuivi avec l'éthanol qui est le meilleur solvant pour la réaction de Hantzch.

10

• Etude de l'effet de masse

Pour optimiser les conditions réactionnelles, Nous avons fait varier la quantité du catalyseur A à chaque expérience (de 0.01g à 0.1g).

La Figure 27 montre que la masse du catalyseur en nombre de mol% pour A est 43.7 mol%, le nombre de mol% du catalyseur B est 18.9 et le nombre de mol% du catalyseur D est 11.55 mol%.

Etude de la réutilisation du catalyseur

20 En ce qui concerne le Catalyseur A on remarque dans la Figure 28 qu'il y a une diminution progressive du rendement au fur et à mesure des utilisations du catalyseur. Nous pouvons expliquer ces résultats par le fait que le catalyseur peut subir un empoissonnement de sa surface par les réactifs avec lesquels il est en contact.

Les catalyseurs phosphatés B et D ne perdent pas leur activité catalytique même après la cinquième réutilisation.

De manière générale, les exemples ci-dessus montrent que les engrais solides à base de phosphates MAP, DAP, NPK et NPS se sont révélés être des catalyseurs hétérogènes très efficaces et permettent de catalyser un choix varié de réactions en chimie organique.

Il s'agit donc de catalyseurs à base d'engrais solides à base de Phosphates d'ammonium qui ont été utilisés pour la première fois dans des réactions organiques connues et qui se sont avérés très efficaces pour le déroulement de ces réactions. Ils ont permis

- de gagner beaucoup de temps de ces réactions, accélération de la vitesse. (Exemple 30 mn au lieu de 22 heures dans une des réactions)
- En présence de ces catalyseurs, un grand nombre de réactions procèdent à température ambiante.
- Ils sont récupérables et réutilisables, même au-delà de 5 recyclages.
- Ils sont facilement disponibles.
- Ils sont très bon marché.
- 40 De plus, ces catalyseurs respectent totalement les principes de la chimie verte.

Ces nouveaux catalyseurs présentent une activité catalytique remarquable et une bonne Recyclabilté. De nombreuses applications sont sujettes à ces catalyseurs à base de dérivés phosphatés en chimie fine et en agriculture.

45

25

30

35

REVENDICATIONS

- 1. Utilisation des engrais: MAP (Mono Amino Phosphates), DAP (di-Amino Phosphates), TSP (Triples Super Phosphates) ainsi que les engrais binaires et ternaires types NPS et NPK en tant que catalyseurs hétérogènes dans les réactions organiques.
- 2. Utilisation des engrais selon la revendication 1: MAP (Mono Amino Phosphates) en tant que catalyseurs hétérogènes dans les réactions organiques.
- 3. Utilisation des engrais selon la revendication 1: DAP (di-Amino Phosphates) en tant que catalyseurs hétérogènes dans les réactions organiques.
- 4. Utilisation des engrais selon la revendication 1: TSP (Triples Super Phosphates en tant que catalyseurs hétérogènes dans les réactions organiques.
- 5. Utilisation des engrais selon la revendication 1: les engrais binaires types NPS en tant que catalyseurs hétérogènes dans les réactions organiques.
- 6. Utilisation des engrais selon la revendication 1: les ternaires types NPK en tant que catalyseurs hétérogènes dans les réactions organiques.
- 7. Utilisation des engrais selon la revendication 1 en tant que catalyseurs hétérogènes dans les réactions organiques in vivo directement dans le sol comme application en agriculture.
- 8. Cette application consiste selon la revendication 8 à larguer les réactifs de départ d'un produit phytosanitaire mélangés à l'un des engrais comme catalyseur et à laisser faire la synthèse dans le sol. Cette méthode a l'avantage de gagner l'étape industrielle de synthèse du phytosanitaire en question et coûterait certainement moins chère.

5

10

15

FIGURES

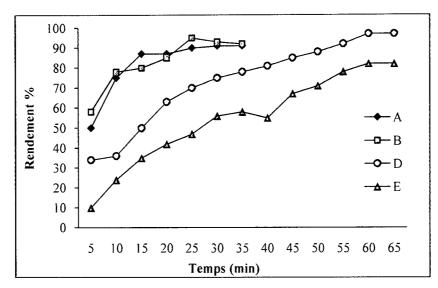


Figure 1 : Effet du temps sur le rendement de la réaction

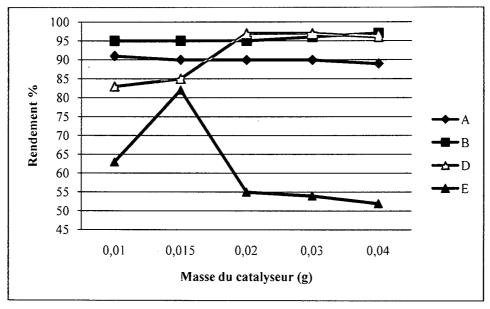


Figure 2 : Effet de la masse des catalyseurs sur le rendement de la réaction A = DAP; B = MAP; D = TSP; E = NPK (16-11-20).

;

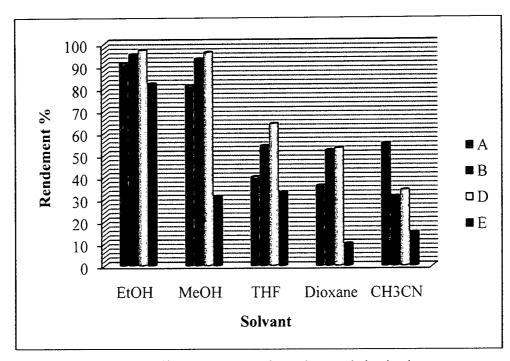


Figure 3: Effet du solvant sur le rendement de la réaction A = DAP; B = MAP; D = TSP; E = NPK (16-11-20).

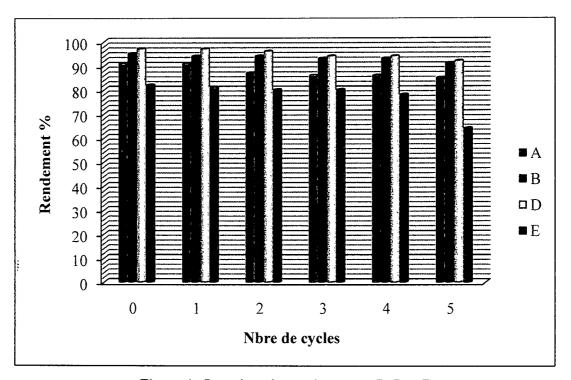


Figure 4: Recyclage des catalyseurs A, B, D et E A = DAP; B = MAP; D = TSP; E = NPK (16-11-20).

;

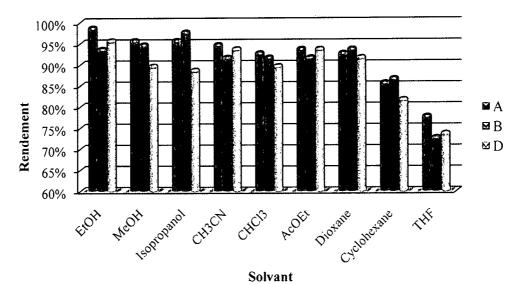


Figure 5 : Effet du solvant sur le rendement de la réaction.

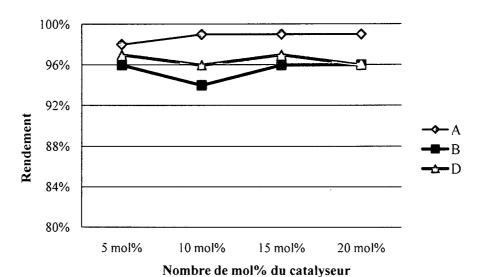


Figure 6 : Effet de la masse des catalyseurs sur le rendement de la réaction.

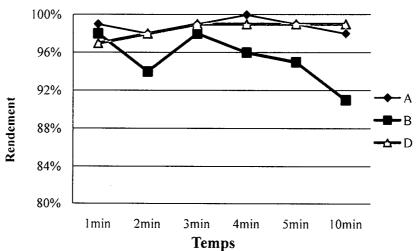


Figure 7 : Effet du temps sur le rendement de la réaction.

;

;

MA

Figure 8: Recyclage des catalyseurs.

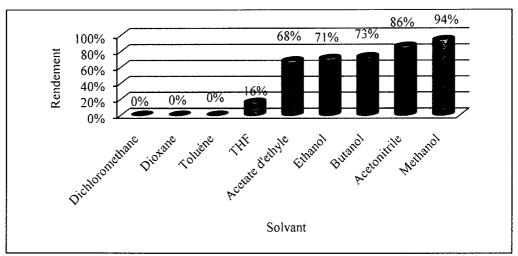


Figure 9 : Effet du solvant sur la synthèse de 2, 4, 5-triphenylimidazole.

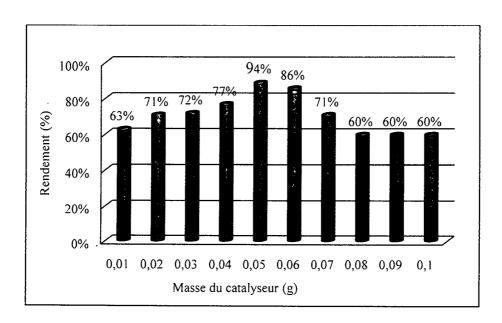


Figure 10 : Effet de la masse du catalyseur sur la synthèse de 2, 4, 5-triphenylimidazole.

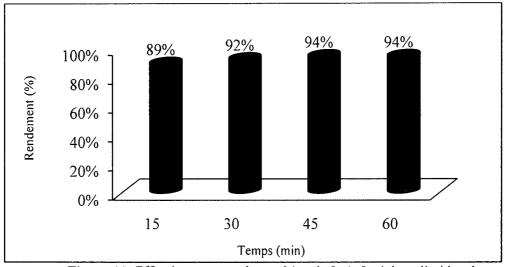


Figure 11: Effet du temps sur la synthèse de 2, 4, 5-triphenylimidazole.

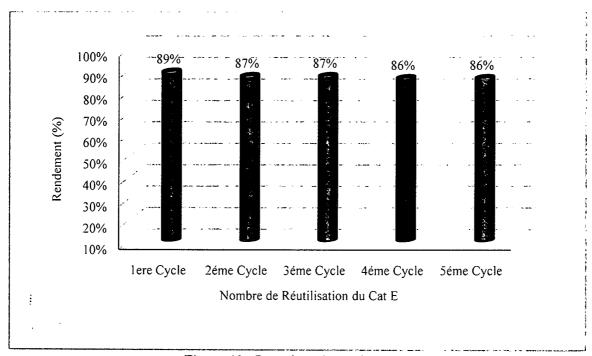


Figure 12: Recyclage du catalyseur <u>E</u>.

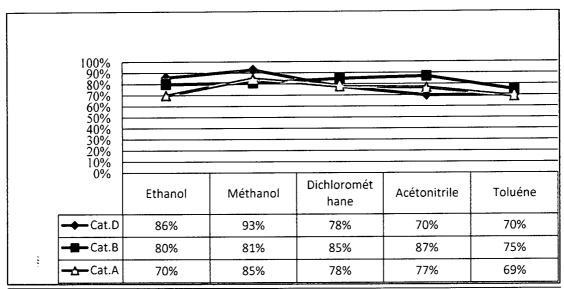


Figure 13 : Effet du solvant sur le rendement de la réaction

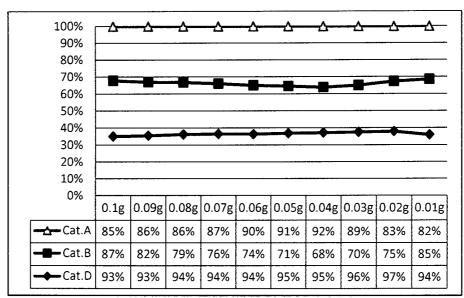


Figure 14 : Effet de la masse du catalyseur sur le rendement de la réaction

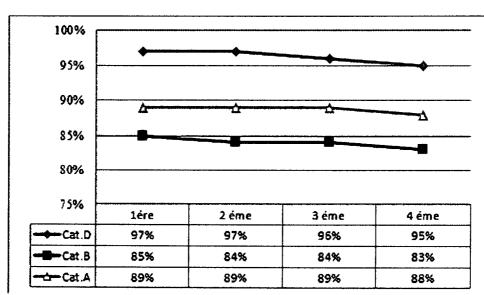


Figure 15: Recyclage du catalyseur

:

Figure 16 : Effet du solvant sur le rendement de la réaction

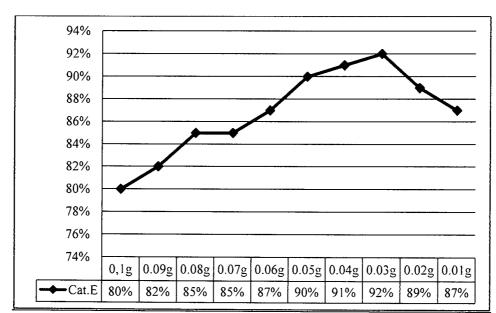


Figure 17 : Effet de la masse du catalyseur sur le rendement de la réaction

:

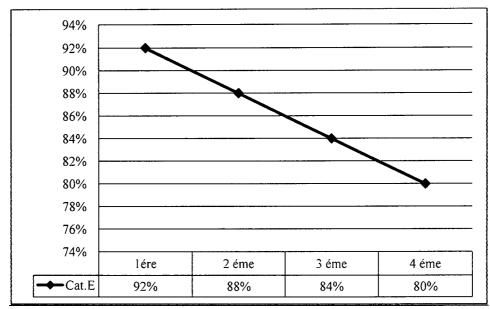


Figure 18: Recyclage du catalyseur

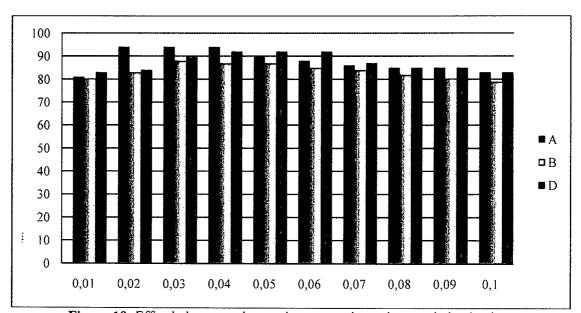


Figure 19: Effet de la masse des catalyseurs sur le rendement de la réaction.

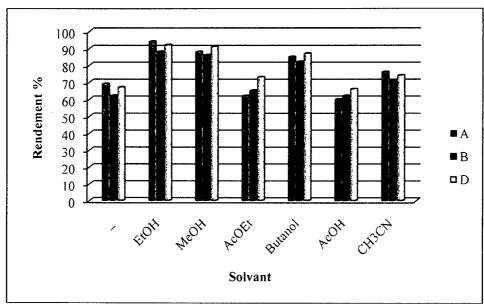


Figure 20: Effet du solvant.

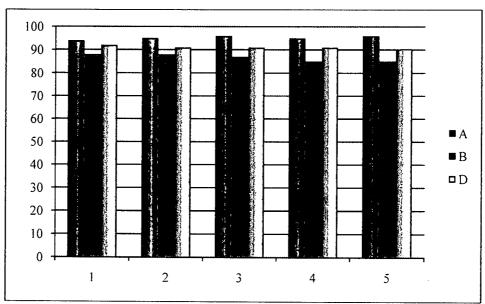


Figure 21: Recyclage des catalyseurs.

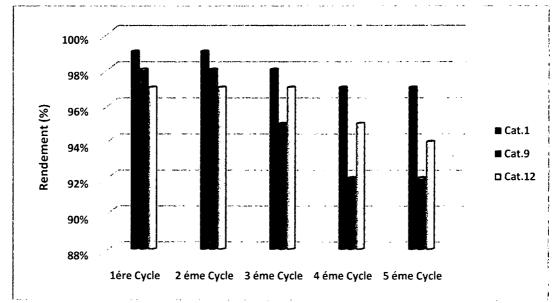


Figure 22 : Recyclage des catalyseurs.

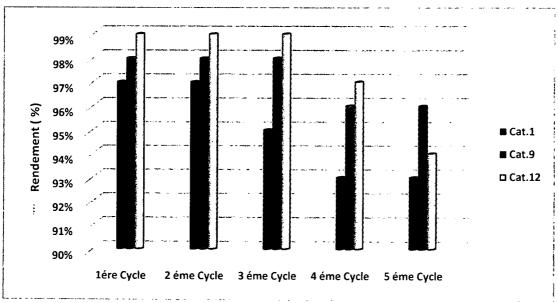


Figure 23: Recyclage des catalyseurs.

;

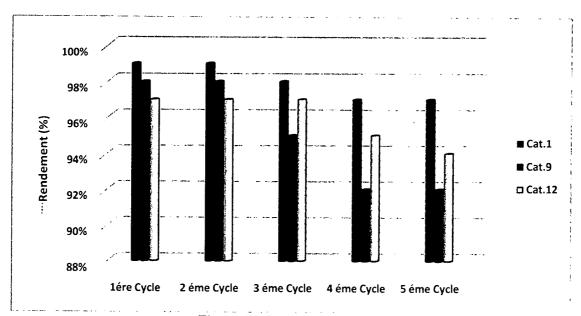


Figure 24: Recyclage des catalyseurs.

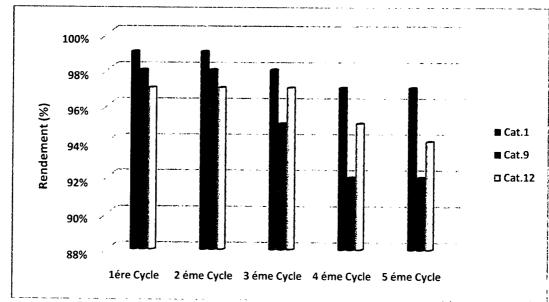


Figure 25: Recyclage des catalyseurs.

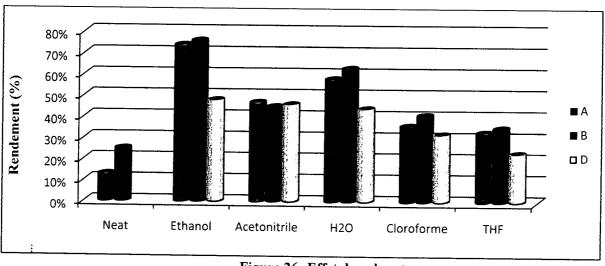


Figure 26: Effet du solvant

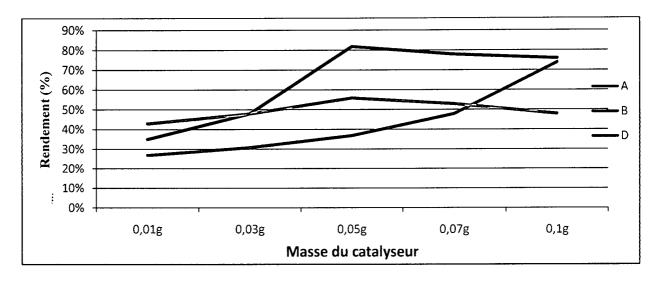


Figure 27: Effet de la masse des catalyseurs sur le rendement de la réaction.

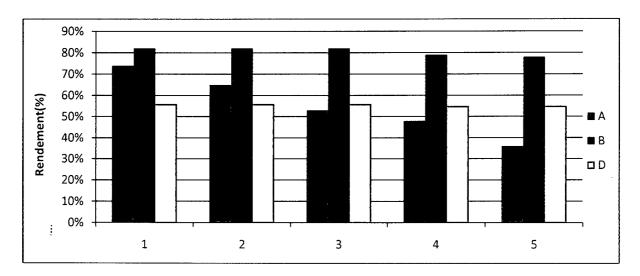



Figure 28: Recyclage des Catalyseurs

ROYAUME DU MAROC

OFFICE MAROCAIN DE LA PROPRIETE INDUSTRIELLE ET COMMERCIALE

RAPPORT DE RECHERCHE AVEC OPINION SUR LA BREVETABILITE

(Conformément aux articles 43 et 43.2 de la loi 17-97 relative à la protection de la propriété industrielle telle que modifiée et complétée par la loi 23-13)

Renseignements relatifs à la demande	
	Date de dépôt : 25/05/2016
Déposant : SOUIZI ABDELAZIZ	
Intitulé de l'invention : Utilisation directe des Enget NPS comme catalyseurs pour chimie fine	grais solides à base de phosphates MAP, DAP, TSP, NPK
la propriété industrielle telle que modifiée et complét	rec opinion sur la brevetabilité établi par l'OMPIC conformément mément à l'article 43.1 de la loi 17-97 relative à la protection de ée par la loi 23-13. rt de recherche sont téléchargeables à partir du site
http://worldwide.espacenet.com, et les documents r	non brevets sont joints au présent document, s'il y en a lieu.
Le présent rapport contient des indications relatives Partie 1 : Considérations générales	aux éléments suivants :
 ☐ Cadre 1 : Base du présent rapport ☐ Cadre 2 : Priorité ☐ Cadre 3 : Titre et/ou Abrégé tel qu'ils sont c 	définitivement arrêtés
Partie 2 : Rapport de recherche	
Partie 3 : Opinion sur la brevetabilité Cadre 4 : Remarques de clarté Cadre 5 : Déclaration motivée quant à la No Cadre 6 : Observations à propos de certaine être effectuée Cadre 7 : Défaut d'unité d'invention	ouveauté, l'Activité Inventive et l'Application Industrielle es revendications dont aucune recherche significative n'a pu
Examinateur: A EL KADIRI	
	Date d'établissement du rapport : 02/11/2016
Téléphone: 212 5 22 58 64 14/00	OFFICE MAROCAIN TO
	DE LA PROPRIETE SO COMMETRAGE SUIT

Partie 1 : Considérations générales

Cadre 1 : base du présent rapport

Les pièces suivantes de la demande servent de base à l'établissement du présent rapport :

- Description
 - 19 Pages
- Revendications

8

Planches de dessin

12 Pages

Partie 2 : Rapport de recherche

Classement de l'objet de la demande :

CIB: B01J27/00, B01J27/14, C05B7/00

Bases de données électroniques consultées au cours de la recherche :

EPOQUE, Orbit

Catégorie*	Documents cités avec, le cas échéant, l'indication des passages pertinents	N° des revendications visées
X	US2369693, AIR REDUCTION, 1945-02-20	1-8
X	US4742032 (A), CONOCO INC, 1988-05-03	1-8

*Catégories spéciales de documents cités :

^{-«} X » document particulièrement pertinent ; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

 [«] Y » document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
 « A » document définissant l'état général de la technique, non considéré comme particulièrement pertinent

^{-«} P » documents intercalaires ; Les documents dont la date de publication est située entre la date de dépôt de la demande examinée et la date de priorité revendiquée ou la priorité la plus ancienne s'il y en a plusieurs

^{-«} E » Éventuelles demandes de brevet interférentes. Tout document de brevet ayant une date de dépôt ou de priorité antérieure à la date de dépôt de la demande faisant l'objet de la recherche (et non à la date de priorité), mais publié postérieurement à cette date et dont le contenu constituerait un état de la technique pertinent pour la nouveauté

Partie 3 : Opinion sur la brevetabilité				
Cadre 5 : Déclaration motivée quant à la Nouveauté, l'Activité Inventive et l'Application Industrielle				
Nouveauté (N)	Revendications 1-8 Revendications aucune	Oui Non		
Activité inventive (AI)	Revendications aucune Revendications 1-8	Oui Non		
Possibilité d'application Industrielle (PAI)	Revendications 1-8 Revendications aucune	Oui Non		

Il est fait référence aux documents suivants. Les numéros d'ordre qui leur sont attribués ci-après seront utilisés dans toute la suite de la procédure

D1: US2369693 D2: US4742032

1. Nouveauté (N):

Aucun document de l'état de l'art ne divulgue les mêmes caractéristiques techniques contenues dans les revendications 1-8, par conséquent, l'objet des revendications 1-8 est nouveau conformément à l'article 26 de la loi 17-97 telle que modifiée et complétée par la loi 23-13.

2. Activité inventive (AI) :

Le document D1 considéré comme l'état de la technique le plus proche de l'objet de la revendication 1 divulgue l'utilisation des fertilisants MAP, DAP comme catalyseur pour une réaction organique.

L'objet de la revendication 1 diffère de ce document D1 en ce que la revendication prévoit en outre l'utilisation des engrais binaires et ternaires NPS et NPK et le TSP comme catalyseur pour une réaction organique.

Aucun effet technique ne peut être identifié pour cette différence à partir de la demande. Le problème à résoudre peut être considéré comme la fourniture des catalyseurs alternatifs autres que les fertilisants MAP. DAP

La solution proposée par l'objet de la revendication 1 de la présente demande ne peut être considérée comme impliquant une activité inventive conformément à l'article 28 de la loi 17-97 telle que modifiée et complétée par la loi 23-13, étant donné que l'homme de métier partant de D1 connait l'utilisation d'un engrais phosphaté comme catalyseur dans les réactions organiques tel que l'ammonium de phosphate, et peut déduire sans faire preuve d'esprit inventif que les engrais : NPS, NPK et TSP peuvent être utilisés comme catalyseur dans les réactions organiques.

Les revendications dépendantes 2-8 ne contiennent aucune caractéristique qui, en combinaison avec celles de l'une quelconque des revendications à laquelle se réfèrent, définit un objet qui satisfasse aux exigences d'activité inventive au sens de l'article 28 de la loi 17-97 telle que modifiée et complétée par la loi 23-13.

3. Possibilité d'application industrielle (PAI) :

L'objet de la présente invention est susceptible d'application industrielle au sens de l'article 29 de la loi 17-97 telle que modifiée et complétée par la loi 23-13, parce qu'il présente une utilité déterminée, probante et crédible.